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bstract

Following remedial investigations of hazardous waste sites, remedial strategies may be developed that target the removal of “hot spots,” localized
reas of elevated contamination. For a given exposure area, a hot spot may be defined as a sub-area that causes risks for the whole exposure area to
e unacceptable. The converse of this statement may also apply: when a hot spot is removed from within an exposure area, risks for the exposure
rea may drop below unacceptable thresholds. The latter is the motivation for a risk-based approach to hot spot delineation, which was evaluated
sing Monte Carlo simulation. Random samples taken from a virtual site (“true site”) were used to create an interpolated site. The latter was gridded
nd concentrations from the center of each grid box were used to calculate 95% upper confidence limits on the mean site contaminant concentration
nd corresponding hazard quotients for a potential receptor. Grid cells with the highest concentrations were removed and hazard quotients were
ecalculated until the site hazard quotient dropped below the threshold of 1. The grid cells removed in this way define the spatial extent of the
ot spot. For each of the 100,000 Monte Carlo iterations, the delineated hot spot was compared to the hot spot in the “true site.” On average, the

lgorithm was able to delineate hot spots that were collocated with and equal to or greater in size than the “true hot spot.” When delineated hot
pots were mapped onto the “true site,” setting contaminant concentrations in the mapped area to zero, the hazard quotients for these “remediated
rue sites” were on average within 5% of the acceptable threshold of 1.

2007 Elsevier B.V. All rights reserved.
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. Introduction

Following remedial investigations of hazardous waste sites,
emedial strategies may be developed that target the removal of
hot spots,” localized areas of elevated contamination. Hot spot
emediation is important to hazardous site cleanup because it
ocuses remedial efforts on smaller targeted areas and reduces
he potential future mass flux of contaminants from these areas.
ot spot delineation falls under the broader category of spa-

ial data analysis for which a variety of methods have been
roposed [1]. Kulldorff [2] proposed the spatial scan statistic
or identifying hot spots by determining the probability that a
iven spatial response cluster could occur by chance variation.
ther past approaches to hot spot delineation include sweep-

ut methods in which available measurements are used to form
est linear unbiased predictions for unquantified areas [3]. Max-
mum entropy methods have also been used in conjunction with
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re-defined hot spot thresholds to determine the probability that
omponents of composite samples exceed hot spot thresholds
hen the composite itself does not [4].
A risk-based approach to hot spot delineation may also be

sed to guide site characterization and remedial strategy. For a
iven exposure area, a hot spot may be defined as a sub-area that
auses risks for the whole exposure area to be unacceptable [5].
he converse of this statement may also apply: when a hot spot

s removed from within an exposure area, risks for the expo-
ure area drop below unacceptable thresholds. The latter is the
otivation for a risk-based approach to hot spot delineation.
An example of such an approach follows. Suppose a former

hemical storage site has been selected for remediation, with
he goal of converting the property into a park for public use.
everal rounds of field sampling have been performed to charac-

erize the nature and extent of contamination at the site. Exposure
cenarios have been developed and health risks to potential cur-

ent and future human receptors have been evaluated. Based
n the 95% upper confidence limit (UCL) of mean contami-
ant concentrations at the site and an exposure scenario for a
uture child recreational visitor to the site, an unacceptable rea-

mailto:sinhap@obg.com
dx.doi.org/10.1016/j.jhazmat.2007.03.086
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maximum at x = 10, y = 10:

Cs = 0.4 × [(50 − abs(x − 10))] × [(50 − abs(y − 10))] (1)
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onable maximum exposure (RME) hazard quotient (HQ ≥ 1) is
stimated for incidental ingestion of a contaminant (e.g., anti-
ony) in surface soil by the child recreator. For the purpose

f this example and subsequent experimental methods, other
otential exposure pathways (e.g, dermal contact and inhala-
ion) are minor compared to the ingestion pathway and are not
onsidered.

Closer examination of the antimony samples reveals that the
5% UCL is influenced by a few high samples, which raise the
ean, variance, and, therefore, the 95% UCL of the antimony

oncentrations. Furthermore, removal of only the top 5 detected
amples would lower the UCL to a concentration low enough to
ead to an acceptable HQ (<1). A sub-area within the exposure
rea, which contains the top 5 detected samples, could be delin-
ated as a hot spot, since removal of this sub-area lowers risk in
he exposure area to acceptable levels.

The value of such a delineation is two-fold: to focus the reme-
ial effort on a targeted region, and to quantify the effect of
uch remediation on site risks to human health. Implementation
f such a risk-based approach to hot spot delineation has been
ssisted by the development of geospatial statistical tools such
s the Spatial Analysis and Decision Assistance (SADA; [6])
odel developed by the University of Tennessee and Oak Ridge
ational Laboratory. However, the effectiveness of risk-based
ot spot delineation methods has not been quantitatively evalu-
ted. In addition, hot spot delineation methods may have spatial
ias due to the uneven spacing of environmental samples.

The purpose of this study is to quantitatively evaluate a risk-
ased, spatially unbiased approach to hot spot delineation. The
rocedure is evaluated by assessing risk reductions in a virtual
ontaminated site following removal of delineated hot spots.
onte Carlo simulation is used to evaluate the procedure for a

ariety of sample data sets, where both the number and location
f samples is allowed to vary randomly.

The hot spot delineation algorithm evaluated here is an alter-
ative to the traditional approach of using regulatory screening
evels (e.g., soil screening levels) to determine site cleanup goals.
or example, if an entire exposure area is remediated down to
soil screening level and the risks are then recalculated for

hat exposure area, the risks will be significantly lower than
cceptable thresholds. In other words, the use of soil screen-
ng levels leads to an “over-cleaning” of the site, because it
s not required that the entire exposure area be below the soil
creening level, only that the 95% UCL of the mean constituent
oncentration for the exposure area be below the soil screening
evel. Therefore, some site concentrations can exceed the soil
creening level without the site as a whole having unacceptable
isks. Furthermore, soil screening levels are based on a single
xposure scenario (e.g., residential), whereas the hot spot delin-
ation algorithm evaluated here can accommodate any specified
xposure scenario.

. Methods
The risk-based hot spot delineation algorithm was designed
o simulate field sampling and data analysis procedures con-
ucted during actual remedial investigations. In environmental
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ampling, two main parameters are under the investigator’s con-
rol: the number and location of samples. Consequently, these
ere the main parameters varied in the Monte Carlo simulation.
Specifically, a virtual site (100 ft × 100 ft; Fig. 1a) with a

ontinuous contaminant distribution was generated using an
rbitrary analytical function of form z = f(x, y) with a single
ig. 1. Antimony concentration (mg/kg) in surface soil in (a) the true site, (b)
he interpolated site for one iteration of the Monte Carlo simulation, and (c) the
nterpolated site in (b) with hot spot delineated. The locations of random samples
rawn from (a) to create the interpolated site for this Monte Carlo iteration are
hown in (b) as white circles.
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here Cs is the contaminant concentration in surface soil
mg/kg), x and y are site coordinates (in ft), and abs is the absolute
alue of the term. A random number of samples were drawn from
andom locations in this virtual site, which will be referred to as
he “true site.” The random spacing of the sample data reflects
he common practical case where data sets collected over time
o not follow a single uniform grid spacing. The random sam-
les drawn from a parent distribution reflects the practical case
f taking a finite number of field samples to try to characterize
parent contaminant population.

The sample data set is the starting point of the risk-based
ot spot delineation procedure. The samples were assigned to a
lank (100 ft × 100 ft) grid with 5 ft × 5 ft grid boxes. The sam-
les were used to generate a site contaminant distribution by
nterpolating between sample points using biharmonic spline, a
ommercially available (Matlab V. 11) interpolation algorithm.
he biharmonic spline finds the minimum curvature surface that
asses through a set of non-uniformly spaced data points using
linear combination of Green functions centered at each data

oint [7].
This interpolation method was chosen on the basis of inter-

omparisons between the interpolated concentrations and the
rue site concentrations. The site resulting from interpolation
f the sample data set will be referred to as the “interpolated
ite.” Fig. 1b shows an interpolated site corresponding to a sam-
le data set of 28 samples randomly drawn from the virtual
ite in Fig. 1a. The locations of the sample data are shown with
hite circles in Fig. 1b. The average concentration in each of the
00 grid cells of the interpolated site was tabulated to create an
interpolated data set” of 400 samples (1 for each grid cell). The
nterpolated data set was used to calculate the 95% UCL of the

ean site contaminant concentration using the non-parametric
hebyshev theorem:

CL = x +
(

s√
α × n

)
(2)

here x is the mean, s is the standard deviation, α is 0.05
1 − confidence limit), and n is the sample size.

By using the interpolated data set to determine the 95% UCL,
here was no spatial bias in the UCL calculation since the data
oints in the interpolated data set are uniformly spaced. This is
n contrast to the sample data drawn from the true site, which
re not uniformly spaced. Since the purpose of the 95% UCL is
o provide an upper-bound estimate of concentrations over the
ntire exposure area, it is important that the data used to calculate
he UCL is spaced uniformly over the exposure area.

A hazard quotient (HQ) for incidental ingestion of a contam-
nant (antimony in surface soil) by a recreational child (age <6
ears) was calculated using the following equation [8]:

Q = EPC × CF × IR × FI × EF × ED

BW × AT × RfD
(3)

here EPC (exposure point concentration) is the 95% UCL for

ntimony in surface soil in the interpolated data set (mg/kg), CF
conversion factor) is 1 × 10−6 kg/mg, IR (surface soil inciden-
al ingestion rate) is 200 mg/day, FI (fraction ingested) is 1, EF
exposure frequency) is 44 days/year, ED (exposure duration) is

s
s
p
a
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years, BW (body weight) is 15 kg, AT (averaging time) = 2190
ays, and RfD (oral reference dose for antimony for non-cancer
oxicity) is 0.004 mg/(kg × day). The exposure factors and the
oxicity reference dose above were obtained from USEPA [9]
nd USEPA [10], respectively. The use of the 95% UCL as the
PC and the conservative exposure factors selected are consis-

ent with a reasonable maximum exposure (i.e., conservative)
stimation of risk [8].

For an overall site HQ ≥ 1, the individual grid cell in the
nterpolated site with the highest contaminant concentration was
emoved (concentration set to 0). Following the removal, the
5% UCL and the corresponding site HQ were recalculated.
his process of preferentially removing those cells with the
ighest contaminant concentrations and recalculating the site
Q was repeated until the site HQ dropped below 1. The grid

ells removed in this way define the spatial extent of the hot spot
elineation, since removal of the cells lowers the site HQ to < 1.
ig. 1c shows the delineated hot spot for the interpolated site in
ig. 1b.

The above process was repeated in a Monte Carlo simula-
ion of 100,000 iterations in which the virtual true site was kept
onstant, but both the number (15–100) and spacing of sam-
les drawn from the true site were allowed to vary randomly. In
ractice, the number of samples to take and their locations are
undamental decisions made in field investigations to help char-
cterize the extent of contamination. By allowing these terms
o vary, we can evaluate their effect on the hot spot delineation
lgorithm. The range of sample sizes (15–100) was arbitrar-
ly selected but allows the hot spot delineation algorithm to
e evaluated for both sparsely sampled and densely sampled
ites. The sample size was drawn from a uniform distribution
etween 15 and 100 so that each value had an equal chance
f being drawn over the course of the 100,000 Monte Carlo
terations.

To quantify the results of the Monte Carlo simulation, the
xtent and location of the estimated hot spot were compared to
hat of the “true hot spot.” The latter was determined by apply-
ng the above hot spot algorithm to the true site (for which
ll the site concentrations are known) to determine what area
ould have to be removed to lower the true site HQ (for inges-

ion of antimony by a child recreator) to <1. The extent of this
rue hot spot is 599 ft2, centered around coordinates (x = 9.95 ft,
= 10.00 ft). The center was determined by averaging the x
nd y coordinates of all the grid cells within the true hot spot
rea. For each Monte Carlo iteration, the extent and center
f the predicted hot spot was compared to the above “true”
alues.

Although the hot spot delineation algorithm was evaluated
or a specific and arbitrary exposure scenario (ingestion of
ntimony), it can be used for other cases as long as sample
oncentrations, an exposure route, and a risk standard (e.g., haz-
rd quotient, cancer risk) are available. Even for more complex
ransport processes such as migration of soil to groundwater, risk

tandards for exposure to groundwater exist, and migration of
oil to groundwater can be modeled from soil concentrations as
art of a given exposure route; therefore, the hot spot delineation
lgorithm can be applied.
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ig. 2. (a) Area extent (ft2) of delineated hot spots versus sample size, (b) X coo
f center of delineated hot spots vs. sample size for a Monte Carlo simulation o
ashed lines in (b) and (c) indicate X and Y coordinates, respectively, of the cen

. Results

The area extent of predicted hot spots as a function of num-
er of samples is shown in Fig. 2a for a Monte Carlo simulation
f 100,000 iterations. The average (μ) predicted hot spot area
s 811 ft2, with a standard deviation (σ) of 143 ft2. The vari-
nce of the estimated hot spot area is highest for lower sample

izes (n < 40, σ = 203 ft2), as the likelihood that samples will
e randomly drawn from within the true hot spot decreases for
ow sample sizes, resulting in a wide range of predicted hot
pots. As the sample density increases (n ≥ 40), the magnitude

r
u
b
s

te (ft) of center of delineated hot spots vs. sample size, and (c) Y coordinate (ft)
,000 iterations. Dashed line in (a) indicates the area extent of the true hot spot.
the true hot spot.

f the predicted hot spot area converges (μ = 787 ft2, σ = 101 ft2).
his value still exceeds the true hot spot area (599 ft2), and for

he entire simulation, the estimated hot spot area exceeds the
rue hot spot area in 97% of cases. This is largely due to the
se of the Chebyshev theorem (Eq. (2)) in calculating site 95%
CLs, which is a conservative approach that leads to an over-

stimate of the site hazard quotient, forcing a larger area to be

emoved to lower the site HQ to 1. The Chebyshev theorem was
sed because it is a non-parametric method and can, therefore,
e applied to any sample distribution. However, a distribution-
pecific method (e.g., t-statistic for normally distributed data)
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ay be used in place of the Chebyshev theorem when the sam-
le distribution is known. In sum, the Monte Carlo simulation
rovides ∼97% confidence that the predicted hot spot is at least
s large as the true hot spot. Conservative overestimation of
he hot spot area during remedial design is favorable because it
ncreases the likelihood of remedial effectiveness, thus lowering
isk.

However, even if the spatial extent of the predicted hot spot
s sufficient, it must be located properly within the site. Fig. 2b
nd c shows the coordinates of the predicted hot spot center as
function of the number of samples in the Monte Carlo sim-

lation. The coordinates were obtained by averaging the x and
coordinates of all the grid cells within a predicted hot spot.
n average, the coordinates of the center of the predicted hot

pots are x = 10.08 ft (σx = 1.16 ft) and y = 10.08 ft (σy = 1.15 ft).
hese average predicted coordinates are within a standard devi-
tion of the center of the true hot spot (x = 9.95 ft, y = 10.00 ft).
s with Fig. 2a, the variance in Fig. 2b and c decreases as the

ample size increases (σx = σy = 1.87 for n < 40; σx = σy = 0.66
or n ≥ 40). With increasing sample size, the likelihood of ran-
omly sampling within the true hot spot increases, resulting in
ore consistency in the estimated hot spot location. For n ≥ 40,

he average coordinates of the predicted hot spot center converge
o x = 10.00 ft and y = 10.00 ft, nearly equal to the true hot spot
enter coordinates.

Based on the results of this Monte Carlo simulation, the hot
pots predicted in the simulation are, on average, collocated with
nd at least as large as the true hot spot. However, in order to meet

he definition of a hot spot, the delineated area (when removed)

ust result in reduction of the site HQ < 1. Therefore, in order
o verify the hot spot delineation algorithm, the predicted hot
pot in a Monte Carlo iteration was mapped onto the true site,

d
t

ig. 3. Hazard quotients of the remediated true sites versus sample size for a Monte C
hreshold for acceptable risk.
Materials 149 (2007) 338–345

etting contaminant concentrations to zero within the mapped
rea. The resulting site may be referred to as the “remediated true
ite.” The average contaminant concentration in each grid cell
f the remediated true site was tabulated and used to calculate
he 95% UCL (Eq. (2)) and site HQ (Eq. (3)). For HQ < 1 in the
emediated true site, the hot spot delineation algorithm may be
eemed successful.

Fig. 3 shows the HQ of the remediated true site as a function
f sample size in the Monte Carlo simulation. On average, the
Q is 1.03 (σ = 0.03), slightly above the desired threshold of 1.
he variance of the HQ decreases for larger sample size (σ = 0.05

or n < 40; σ = 0.01 for n ≥ 40), as the hot spot algorithm is able
o perform more consistently with greater sample density. For
≥ 40, the remediated true site also has an average HQ of 1.03,
ithin 5% of the acceptable threshold (HQ = 1).
In order for the HQ of the remediated true site to be ≤1, the

enter of the delineated hot spot has to be collocated with the
enter of the true hot spot and the area of the delineated hot
pot has to be at least as large as the area of the true hot spot.

hile these conditions are met on average (Fig. 2) in the Monte
arlo simulation, for an individual iteration of the simulation, the
onditions are not exactly met, resulting in numerous iterations
here the remediated true site has HQ > 1 (Fig. 3). Neverthe-

ess, the remediated site HQ’s are largely <1.1, which represents
anageable and acceptable risk from a risk management

erspective.

. Discussion
Based on a Monte Carlo simulation of 100,000 iterations,
elineated hot spots are, on average, collocated with and equal
o or greater in size than the “true hot spot.” However, a num-

arlo simulation of 100,000 iterations. Dashed line indicates the hazard quotient
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er of factors influence the delineation process, as discussed
elow.

.1. Interpolation

The choice of interpolation method will affect the hot spot
elineation algorithm by affecting the contaminant concentra-
ions in the interpolated site. Common interpolation methods
nclude linear, polynomial, kriging, inverse distance weighted,
tc. The differences between interpolation methods become par-
icularly exaggerated when samples are sparse. However, as will
e discussed below (Section 4.3), confidence in the delineation
lgorithm is generally low for low sample density, making the
hoice of interpolation method less critical.

The interpolation method used in this study (biharmonic
pline) was chosen after comparing interpolated concentrations
ith true site concentrations and repeating over a number of

terations. Because this study used Monte Carlo simulation to
valuate a hot spot delineation algorithm, it was essential that the
nterpolation method chosen could be easily implemented within
Monte Carlo framework (i.e., numerous iterations with mini-
al processing demands). If the hot spot delineation algorithm
ere run for fewer iterations, as would be the case for appli-

ations to field data (see Section 4.4), other more sophisticated

nterpolation methods could be used. For example, universal
riging, though encumbered with large estimation uncertainties,
s available for extension to unsampled locations, a condition that
he biharmonic spline algorithm does not effectively handle.

a
t
l
r

ig. 4. Antimony concentration (mg/kg) in surface soil in (a) a true site with multiple
c) an interpolated site based on field data, and (d) the interpolated site in (c) with hot
nterpolated site in (b) are shown as white circles in (a). The locations of field sample
Materials 149 (2007) 338–345 343

.2. Multiple hot spots

Thus far, the hot spot delineation algorithm has been evalu-
ted for a virtual site with a single, sizable (600 ft2) hot spot. To
xtend the evaluation, additional simulations were performed for
irtual sites with multiple (2–4), smaller hot spots. For example,
ig. 4a shows a virtual site with four hot spots whose respective
true areas” sum to 400 ft2. The same exposure scenario as used
n the single hot spot delineation (incidental ingestion of anti-

ony in surface soil by a recreational child) was used for the
ultiple hot spot delineation. Fig. 4b shows hot spots delineated

iven a sample data set of 75 samples randomly drawn from the
irtual site in Fig. 4a. The locations of the sample data are shown
s white circles in Fig. 4a.

In general, the larger a given hot spot (relative to the total
ite area), the more effective the hot spot algorithm, due to the
ncreased likelihood of randomly sampling within the hot spot.
t should be noted that within a risk-based approach to hot spot
elineation, the size of the total site area is not arbitrary, but
ather reflects the exposure area for a potential receptor. In the
ase of the child recreator, the total site area might be the grounds
f a park, but would not, for example, include a fenced-off area
ot accessible to recreators. Accurate specification of the site
rea is important to the hot spot algorithm because a larger site

rea (for a hot spot of fixed size) has lower overall site risks due
o the presence of larger uncontaminated areas. Therefore, in a
arger site area, a smaller hot spot would have to be removed to
esult in acceptable overall site risks.

hot spots, (b) the interpolated site corresponding to (a) with hot spot delineated,
spot delineated. The locations of random samples drawn from (a) to create the
s used to create the interpolated site in (c) are shown as white circles in (c).
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In addition to the relative size of the hot spot, the distance
etween multiple hot spots affects the hot spot algorithm. The
reater the spatial separation between hot spots, the higher the
ikelihood of delineating distinct hot spots. In Fig. 4a, for exam-
le, the two hot spots in the northeast corner of the virtual site are
oo close together to be delineated as separate hot spots, given
he sample density. As a result, a single hot spot is predicted for
hat portion of the site (Fig. 4b).

.3. Probability of not finding a hot spot

The probability of finding or not finding a given hot spot
epends on the sample density relative to the hot spot dimen-
ions. Gilbert [11] describes a Bayesian approach to hot spot
ampling for a given acceptable probability of not finding a hot
pot. In the case of uniformly spaced samples and a circular hot
pot, the diameter of the hot spot needs to be roughly greater
han or equal to the spacing between samples in order to have
90% confidence of finding the hot spot [11].
In the simulations in this study, the samples are spaced ran-

omly, not uniformly. However, the same basic principle applies
n that the ability to find a hot spot depends on the spacing
etween samples relative to the size of the hot spot. In Fig. 4a,
or example, south of the two hot spots in the northeast corner of
he site, there is a sizable area (approximately 20 ft by 30 ft) with-
ut any samples. Given no a priori knowledge of the site, there
an be little or no confidence in being able to find a hot spot
ith diameter <20 ft in this location. This example highlights

he importance of developing careful and strategic sampling
lans, which allow for sufficient, properly spaced samples, when
ndertaking field investigations.

.4. Applications to field data

Thus far, the hot spot delineation algorithm has been evalu-
ted using virtual sites for which all “true concentrations” are
nown. The benefit of using such sites is the ability to verify
hether the algorithm succeeded in delineating the “true hot

pots.” However, in practical situations, the investigator likely
as minimal a priori knowledge of site contaminants. A histor-
cal investigation may yield information on past waste disposal
ractices and locations, which in turn may suggest likely hot
pot locations. Such information could be used in conjunction
ith a Bayesian hot spot sampling approach [11] to conduct hot

pot sampling with a well-defined probability of success. How-
ver, in many cases, such historical information is imprecise or
ot available.

Fig. 4c and d shows the results of applying the hot spot algo-
ithm to a field data set, once again, for antimony in surface soil
ith respect to incidental ingestion by a child recreator. In this

xample, of course, there is no “true site” that is known ahead of
ime. The only data available is a sample data set of 27 samples

hown as white circles in Fig. 4c, which also shows the interpo-
ated site created using the sample data. The hot spot area that
as removed to reduce the hazard quotient of the interpolated

ite to <1 is shown in Fig. 4d.

w
h
s
z
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In keeping with the discussions above, a few qualifications
ust be made about this delineation. Since there is no “true

ite” to compare to, we must exercise caution in evaluating the
esults of the hot spot delineation. First of all, in areas without
amples (northwest and southeast corners of the site), we have
o confidence in being able to find or not find hot spots. Even
n areas with samples, we only have confidence in being able to
nd hot spots of dimensions greater than or equal to the spac-

ng of the samples. Furthermore, it should be verified whether
he entire area presented in Fig. 4c is needed for the evaluation.
pecifically, if there are any portions of the site that the child
ecreator may not be able to access (e.g., due to fencing or other
arriers), these areas are not part of the exposure area for the
otential receptor and should be removed from the delineation.
astly, even if the algorithm does not lead conclusively to hot
pot delineation, it may provide guidance in directing the collec-
ion of additional samples. In particular, sampling within and/or
round the delineated area may be used to refine and confirm the
elineation, and collection of additional samples in areas with
ow sample density would increase confidence that undetected
ot spots do not exist.

In summary, some important considerations relate to the
pplication of the hot spot algorithm to environmental data sets.
or a given sample density, the hot spot algorithm performs bet-

er for larger hot spots (relative to the total site area), since the
ikelihood of randomly sampling within the hot spot increases
or larger hot spots. The boundaries of the total site area are
ot arbitrary, but are defined by the exposure area appropri-
te to a potential receptor. Confidence in hot spot delineation
s largely dictated by sample density. For hot spots of diam-
ter less than the spacing of samples, there is low confidence
n being able to detect and delineate the hot spot. Collection
f additional samples in areas with low sample density and
ithin delineated areas will improve confidence in the hot spot
elineation.

. Conclusions

A risk-based approach to hot spot delineation was evaluated
sing Monte Carlo simulations. Random samples taken from a
irtual site (“true site”) were used to create an interpolated site.
he latter was gridded and concentrations from the center of each
rid box were used to calculate 95% upper confidence limits
n the mean site contaminant concentration and corresponding
azard quotients for a potential receptor. Grid cells with the
ighest concentrations were removed and hazard quotients were
ecalculated until the site hazard quotient dropped below the
hreshold of 1. The grid cells removed in this way define the
patial extent of the hot spot.

This hot spot delineation algorithm was applied to a Monte
arlo simulation of 100,000 iterations for the same true site,
llowing the number and locations of samples to vary randomly.
n average, the algorithm was able to delineate hot spots which

ere collocated with and equal to or greater in size than the “true
ot spot.” When delineated hot spots were mapped onto the true
ite, setting contaminant concentrations in the mapped area to
ero, the hazard quotients for these “remediated true sites” were
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[10] USEPA, Integrated Risk Information System, Substance File for Anti-
mony, Oral RfD Assessment, 1991 (available at: http://www.epa.gov/
P. Sinha et al. / Journal of Haza

alculated. On average, these hazard quotients were within 5%
f the acceptable threshold of 1.
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